手机知网 App
24小时专家级知识服务
打 开
计算机软件及计算机应用
FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation
Because pixel values of foggy images are irregularly higher than those of images captured in normal weather(clear images), it is difficult to extract and express their texture. No method has previously been developed to directly explore the relationship between foggy images and semantic segmentation images. We investigated this relationship and propose a generative adversarial network(GAN) for foggy image semantic segmentation(FISS GAN), which contains two parts: an edge GAN and a semantic segmentation GAN. The edge GAN is designed to generate edge information from foggy images to provide auxiliary information to the semantic segmentation GAN.The semantic segmentation GAN is designed to extract and express the texture of foggy images and generate semantic segmentation images. Experiments on foggy cityscapes datasets and foggy driving datasets indicated that FISS GAN achieved state-of-the-art performance.
0 21
手机阅读本文
下载APP 手机查看本文
IEEE/CAA Journal of Automatica Sinica
2021年08期
相似文献
图书推荐
相关工具书

搜 索