手机知网 App
24小时专家级知识服务
打 开
计算机软件及计算机应用
基于时间序列的混合神经网络数据融合算法
针对传统的数据融合算法对高噪声、大规模、数据结构复杂的时间序列数据融合性能较差的问题,该文提出了一种混合神经网络的数据融合算法(即SCLG算法).SCLG算法的思想如下:首先利用奇异谱分析算法对数据分解重构以达到去噪的目的;其次,通过深层卷积神经网络提取数据的空间特征和短期时间特征;然后,利用长短期记忆(LSTM)网络和门控循环单元(GRU)网络双层网络,进一步深度提取了数据时间维度上的特征;最后,利用全连接网络,综合主要信息输出最终的决策.通过SP&500和AQI数据集上的实验结果表明,该算法在融合性能及稳定性方面均优于DCNN、CNN-LSTM、FDL数据融合算法.
0 224
手机阅读本文
下载APP 手机查看本文
应用数学和力学
2021年01期

搜 索