手机知网 App
24小时专家级知识服务
打 开
数学
与线性变换的完全环同构的环理论(Ⅴ)
<正> 一个环 R 称为本原环,若 R 同构于线性变换稠密环.如果 R 含有非零基座,那末 R 可与除环 F 上的一个对偶空间(A,A′)联系起来,并有熟知的同构定理.F 上向量空间 A的一个线性变换σ称为在 A′上有一个伴随σ′,若σ′是 A′上的一个线性变换并且(aσ,a′)=(a,a′σ′),其中 a∈A,a′∈A′.在有限拓扑意义下,具有伴随的线性变换一定是连续的.我们始终记(?)_(A′)(A)为 A 的所有连续线性变换的环,(?)_A′(A)为秩有限的所有连续线性变换的环.
0 51
手机阅读本文
下载APP 手机查看本文
数学学报
1980年04期

搜 索