手机知网 App
24小时专家级知识服务
打 开
数学
广义超特殊p-群的自同构群Ⅲ
确定了广义超特殊p-群G的自同构群的结构.设|G|=p~(2n+m),|■G|=p~m,其中n≥1,m≥2,Aut_fG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是p~m时,(i)如果p是奇素数,那么AutG/AutfG≌Z_((p-1)p~(m-2)),并且AutfG/InnG≌Sp(2n,p)×Zp.(ii)如果p=2,那么AutG=Aut_fG(若m=2)或者AutG/AutfG≌Z_(2~(m-3))×Z_2(若m≥3),并且AutfG/InnG≌Sp(2n,2)×Z_2.(2)当G的幂指数是p~(m+1)时,(i)如果p是奇素数,那么AutG=〈θ〉■Aut_fG,其中θ的阶是(p-1)p~(m-1),且Aut_f G/Inn G≌K■Sp(2n-2,p),其中K是p~(2n-1)阶超特殊p-群.(ii)如果p=2,那么AutG=〈θ_1,θ_2〉■Aut_fG,其中〈θ_1,θ_2〉=〈θ_1〉×〈θ_2〉≌Z_(2~(m-2))×Z_2,并且Aut_fG/Inn G≌K×Sp(2n-2,2),其中K是2~(2n-1)阶初等Abel 2-群.特别地,当n=1时,AutfG/InnG≌Zp.
0 64
手机阅读本文
下载APP 手机查看本文
数学年刊A辑(中文版)
2011年03期

搜 索