手机知网 App
24小时专家级知识服务
打 开
物理学
基于变分模态分解的水下目标噪声特征提取及分类
当信号中存在异常事件引起的间歇现象时,传统的经验模态分解算法常易产生较为严重的模态混叠现象,严重影响目标特征提取的性能。文章在水下被动目标信号特征分析提取中引用变分模态分解算法。该方法能够自适应地对信号频带进行切割,极大程度上避免了传统模态分解算法所产生的模态混叠现象,提高了对目标特征提取的准确性,同时也避免了无效计算。此外,还利用相关性阈值进行模态选择,一定程度上消除干扰模态。在对变分模态分解(Variational Mode Decomposition, VMD)的各阶模态函数进行希尔伯特变换的基础上,提出一种基于变分模态分解和希尔伯特变换(VDM-Hilbert Transformation, VDM-HT)联合处理的特征集进行目标分类。采用四种分类器对3种水下目标噪声信号进行分类。结果表明,VMD-HT算法所提取的特征集相比其他模态分解算法具有更好的分类性能。
1 258
手机阅读本文
下载APP 手机查看本文
声学技术
2021年02期
相似文献
图书推荐
相关工具书

搜 索