手机知网 App
24小时专家级知识服务
打 开
轻工业手工业
基于高光谱成像技术的小白杏成熟度判别模型
为快速、准确检测小白杏的成熟度,本研究选择七成熟、八成熟、九成熟、十成熟的小白杏样本各120个,采用近红外高光谱成像系统采集样本的高光谱数据,进行去除噪声和剔除界外样本处理。然后使用均值中心化(mean centering,MC)、Savitzky-Golay卷积求导法(savitzky-golay derivative,S-G)、多元散射校正(multiplicative scatter correction,MSC)、标准正态变量变换(standard normal variate transformation,SNV)、归一化法5种方法分别对全波段和特征波段光谱进行预处理,采用光谱-理化值共生距离算法(sample set partitioning based on joint x-y distance,SPXY)、K-S法(kennard-stone,K-S)、双向算法(Duplex)、交叉验证法(cross validation)、随机法将样本划分为校正集和验证集。最后用极限学习机(extreme learning machine,ELM)、支持向量机(support vector machine,SVM)、偏最小二乘法(partial least squares,PLS)、K最邻近法(k-nearest neighbor,KNN)、贝叶斯判别法建立不同的分类判别模型,比较各模型的识别率。结果表明,对小白杏成熟度定性判别模型,有以下几种最优组合:全波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN;全波段+S-G/MSC/归一化/SNV+随机法+贝叶斯;全波段+S-G+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN;全波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS;特征波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN/贝叶斯;特征波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS。
0 172
手机阅读本文
下载APP 手机查看本文
食品研究与开发
网络首发
相似文献
图书推荐
相关工具书

搜 索