手机知网 App
24小时专家级知识服务
打 开
工业通用技术及设备
基于GF-1遥感影像的荒漠区耕地分类与提取方法
耕地作为一种战略性自然资源,是确保我国粮食生产安全的物质基础和重要前提。荒漠区绿洲性耕地生态环境脆弱,易受风沙侵蚀,对耕地进行持续性精确监测具有更为重要的意义。,本文基于深度学习算法,使用GF-1遥感数据进行耕地及其类别信息提取。为充分利用研究区物候特征,结合冬夏两期遥感影像,将植被指数NDVI值和纹理特征灰度共生矩阵能量值作为特征波段,基于U-Net模型实现耕地分类和提取,主要包括农田(棉花覆盖耕地)、果林耕地及未耕作耕地3种类型。结果表明:仅使用夏季影像对农田的识别准确度即可达90.83%,若加入冬季影像、植被指数及纹理特征波段,可有效提升模型对果林耕地、未耕作耕地的识别效果,整体识别准确度分别为88.39%、79.51%,相比于传统方法提升了4.67%、6.11%。同时与支持向量机和随机森林分类器相比,该方法能够减少地块内同种作物间的“椒盐噪声”,避免对未耕作耕地的大规模错分现象。因此,本文方法可为荒漠区绿洲性耕地状态的快速识别与监测提供参考。
石河子大学学报(自然科学版)
网络首发
相似文献
图书推荐
相关工具书

搜 索