手机知网 App
24小时专家级知识服务
打 开
武器工业与军事技术
基于雷达测量的用于炮位侦察的Transformer网络
依赖雷达测量数据的炮位侦察在遇到炮弹低射角时面临极大的挑战。雷达观测数据弧段短、测量误差大,且具有数据批量小、非线性、不完整等特点,炮位外推困难。广泛用于自然语言处理领域的Transformer网络具有长距离依赖、全自注意力机制等特点,在长距离序列建模方面具有较大优势。该文提出了一种时间戳编码的方法,首次应用于Transformer网络来表征空气动力目标的飞行轨迹,并外推炮位位置。同时建立了大规模雷达侦测仿真数据集用于网络训练,并与传统炮位侦察算法,如卡尔曼滤波类算法、长-短周期记忆网络等进行了对照实验。结果表明:Transformer网络在预测炮位时收敛性能好,圆概率误差指标优于其他方法。
0 96
手机阅读本文
下载APP 手机查看本文
南京理工大学学报
2021年02期
相似文献
图书推荐
相关工具书

搜 索