手机知网 App
24小时专家级知识服务
打 开
机械工业
基于多尺度模糊熵的齿轮故障诊断方法
齿轮作为旋转机械的关键零部件之一,其健康状态会影响机械设备的正常运行,因此需要对齿轮进行故障诊断。为了克服模糊熵从单一尺度上考虑时间序列复杂度不够全面的问题,采用了多尺度模糊熵从多个尺度对信号进行处理从而提取故障特征,并借助对类域的交叉或重叠较多的待分样本集识别效果显著的K最近邻分类器对提取的多尺度模糊熵特征进行分类,确定齿轮是否发生故障和发生故障的类型。为了验证提出方法的有效性,使用齿轮故障试验台采集相关数据集对方法进行测试并与多尺度熵以及根据时间和频率特性提取的特征进行对比,提出的方法对5种不同的齿轮故障类型识别率达到了100%,明显优于两种对比特征提取方法,为齿轮故障诊断提供了新思路。
0 145
手机阅读本文
下载APP 手机查看本文
测控技术
2021年03期
相似文献
图书推荐
相关工具书

搜 索