手机知网 App
24小时专家级知识服务
打 开
核科学技术
Design study of APS-U-type hybrid-MBA lattice for mid-energy DLSR
In recent years, a new generation of storage ring-based light sources, known as diffraction-limited storage rings(DLSRs), whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to the scientific community, has garnered significant attention worldwide. Researchers have begun to design and build DLSRs. Among various DLSR proposals, the hybrid multibend achromat(H-MBA) lattice enables sextupole strengths to be maintained at a reasonable level when minimizing the emittance; hence, it has been adopted in many DLSR designs. Based on the H-7 BA lattice, the design of the Advanced Photon Source Upgrade Project(APS-U) can effectively reduce emittance by replacing six quadrupoles with anti-bends. Herein, we discuss the feasibility of designing an APS-U-type H-MBA lattice for the Southern Advanced Photon Source, a mid-energy DLSR light source with ultralow emittance that has been proposed to be built adjacent to the China Spallation Neutron Source.Both linear and nonlinear dynamics are optimized to obtain a detailed design of this type of lattice. The emittance is minimized, while a sufficiently large dynamic aperture(DA) and momentum acceptance(MA) are maintained. A design comprising 36 APS-U type H-7 BAs, with an energy of 3 GeV and a circumference of 972 m, is achieved. The horizontal natural emittance is 20 pm·rad, with a horizontal DA of 5.8 mm, a vertical DA of 4.5 mm, and an MA of 4%, as well as a long longitudinal damping time of 120 ms.Subsequently, a few modifications are performed based on the APS-U-type lattice to reduce the maximum value of damping time from 120 to 44 ms while maintaining other performance parameters at the same level.
1 19
开通会员更优惠,尊享更多权益
手机阅读本文
下载APP 手机查看本文
Nuclear Science and Techniques
2021年07期
论文一键智能排版
排版交给我们,时间留给研究
立即查看 >
相似文献
图书推荐
相关工具书

搜 索