手机知网 App
24小时专家级知识服务
打 开
计算机软件及计算机应用
基于核的四重子空间的LDA特征抽取方法
模式分类在面临非线性高维数据下的小样本问题时通常十分困难.文中提出了一种核的四重子空间学习(KFS)方法.首先通过构造基于类内和类间散布矩阵的混合鉴别准则,获得分布在各子空间中降维样本的最优鉴别信息.其次,通过向量点积,核鉴别分析方法(KFD)成为一种有效的抽取非线性鉴别信息的算法,在此基础上,提出了基于核的四重子空间鉴别分析算法,从而有效解决了非线性小样本问题的特征抽取.在ORL和Yale人脸库上的实验结果验证了该方法的有效性.
0 55
手机阅读本文
下载APP 手机查看本文
江苏科技大学学报(自然科学版)
2010年05期
相似文献
相关工具书
图书推荐

搜 索