手机知网 App
24小时专家级知识服务
打 开
化学
ZnCl_2辅助制备FeNC催化剂:增加活性位点密度以提高氧还原活性(英文)
Fe、N掺杂的碳材料(FeNC)是最有希望取代贵金属用作氧还原反应的催化剂之一.然而,传统FeNC材料制备过程中所采用的高温碳化-蚀刻步骤会造成相邻Fe原子随温度升高而逐渐团聚,形成较大尺寸金属铁单质、铁氧化物或碳化物的聚集颗粒,并在后续酸刻蚀处理中被移出,铁元素损失严重,无法形成有效活性位点.同时高温下含N小分子物质也容易分解并从产物中逸出,导致N元素掺杂量较低.直接焙烧还加重了碳的团聚,造成材料内部孔道有限,比表面积低,活性位难以暴露于三相界面.因此,焙烧处理过程中如何形成Fe、N元素的高含量、均匀分散掺杂,同时构建大量内部联通孔道,是形成高活性Fe NC催化剂的关键.本文采用ZnCl_2辅助焙烧方法制备出具有高活性位点密度和大材料孔隙率的Fe NC催化剂;通过TEM、N2吸附和XPS等一系列物理手段对所制备样品进行了形貌、结构及组成表征,提出了ZnCl_2辅助催化剂合成机理;结合CV和LSV等电化学测试结果详细探讨了ZnCl_2辅助方法对催化剂结构和催化性能的影响.普通共价盐ZnCl_2在283–732°C的较宽温度范围内呈现熔融态,同卟啉铁(Fe Pc)碳化温度区间恰好匹配,可以辅助Fe NC催化剂进行元素掺杂和多级孔结构的构建.首先,在熔融状态下,过量的ZnCl_2形成分支结构,阻止相邻Fe物种直接接触和聚集,有利于形成高度分散的FeN_x活性位点.其次,熔融的ZnCl_2像盖子一样包封住催化剂前驱体,避免了挥发性含N小分子的快速逸出,使得N原子在高温下有可能重新在碳骨架中形成掺杂,有助于在材料中保留更高比例的活性N物质.在ZnCl_2的辅助下碳化Fe Pc得到的Sphere-FeNC样品具有高达4.37%的总N含量,并且Fe-Nx含量也高达0.71%,分别是不使用ZnCl_2制备的对比催化剂FeNC-none的3.2和13倍.同时, ZnCl_2辅助合成方法将Fe NC材料的比表面积增加4.5倍,总孔体积增加7倍.三电极氧还原反应性能测试表明, Sphere-Fe NC在碱性和酸性介质的初始电位分别为1.080和1.015 V(vsRHE),半波电位分别为0.906和0.799 V (vs RHE),活性优异.以Sphere-FeNC为阴极催化剂组装的单电池功率达到0.72 W mg~(–1),高于已报道的Fe NC和Pt/C催化剂.因此, ZnCl_2辅助焙烧碳化的方法可以作为一种普适手段用于构建具有高密度活性元素掺杂和大量微孔介孔分布的碳基催化材料,并应用于各类催化反应.
1 67
Chinese Journal of Catalysis
2020年05期

搜 索