手机知网 App
24小时专家级知识服务
打 开
金属学及金属工艺
Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films
Cu–graphene(Gr) composite thin films were prepared by electrodeposition route using in-house synthesized Gr sheets. The Gr sheets were synthesized by the electrochemical exfoliation route using 1 M HClO_4 acid as electrolyte. The Gr sheets were confirmed by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), field-emission scanning electron microscopy(FESEM), and transmission electron microscopy(TEM). The(002) plane of Gr sheets was observed at 2θ of 25.66°. The(002) plane confirmed the crystal structure of carbon peaks. The stretching vibration of C=C bond at a wavelength of 1577 cm~(-1) and other functional groups of carboxyl and epoxide groups were observed from FTIR. TEM confirmed the transparent structure of Gr sheets. The prepared Gr sheets were used as reinforcement at concentrations of 0.1 and 0.3 g/L with a copper matrix to synthesize the Cu–Gr composite. The prepared composite thin films were characterized by XRD, SEM, and energy-dispersion spectrometry(EDS) for morphological and analytical studies. The presence of Gr sheets in Cu–Gr composite was confirmed by EDS analysis. The prepared Cu–Gr nanocomposite thin film showed higher corrosion resistance compared with pure copper thin films in 3.5 wt% NaCl, as confirmed by Tafel plots. Electrochemical impedance spectroscopy complimented the above results and showed that 0.3 g/L composite film achieved the highest film resistance.
0 11
手机阅读本文
下载APP 手机查看本文
International Journal of Minerals Metallurgy and Materials
2021年09期
相似文献
图书推荐
相关工具书

搜 索