手机知网 App
24小时专家级知识服务
打 开
自动化技术
基于神经网络的函数逼近方法研究
函数逼近是函数论中的一个重要组成部分,其在数值计算中的作用是十分重要的。运用神经网络进行函数逼近,为函数逼近的发展提供了一条新的思路。 用神经网络作函数的逼近有许多优点:首先,它提供了一个标准的逼近结构及逼近工具,这个工具可以随着隐层个数改变来达到任意精度;其次,有标准的学习算法用以确定逼近函数的参数,并且这一过程是拟人的,即很好地模拟了人的学习过程;最后,能处理的数据对象十分广泛:适用于大规模的,高度非线性的,不完备的数据处理。 本文以几种典型神经网络为例(BP神经网络、RBF神经网络、正交多项式基函数神经网络、样条基函数神经网络),对基于神经网络的函数逼近方法进行了研究。神经网络的函数逼近能力受神经元个数、学习率、学习次数和训练目标等因素的影响,因此,在研究过程中,充分运用神经网络的非线性逼近能力,首先对几种用于函数逼近的神经网络的结构及算法进行研究;再针对几种常用函数曲线,如正弦函数、指数函数、对数函数、三角函数等,分别用典型神经网络进行逼近,并对逼近效果进行比较,得到用于函数逼近的神经网络选取规律。所得结论经过实际仿真测试,证明了其有效性。 本文的研究结果对函数逼近的研究具有借鉴意义。
硕士论文
《东北师范大学》 2011年硕士论文
相似文献
图书推荐
相关工具书

搜 索