手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

煤层变形与瓦斯运移耦合系统动力学研究

孔海陵

   煤与瓦斯突出是煤矿安全生产的重大隐患,其突出机理是目前采矿学界研究的热点问题,同时也是一直没有解决的问题。研究煤层变形与瓦斯在煤层中运移之间的耦合作用、探索耦合运动计算方法以及分析系统的结构稳定性和运动稳定性,对于解释突出机理、预防和治理煤与瓦斯突出灾害具有重要的意义。 煤炭资源的开采破坏了煤层及其围岩的原始平衡,开采后煤层及其围岩的变形状态与瓦斯的运移形式发生急剧变化,并可能导致运动失稳或结构失稳。瓦斯在煤层中的运动(吸附/解吸、扩散、渗流)受到煤层变形状态的影响,反过来瓦斯含量、压力的变化引起煤层孔隙度、变形状态、位移、速度、加速度、应变率、应变和应力的变化,因此,煤层的变形运动与瓦斯的运移之间存在着复杂的耦合作用。 本文从时变边界系统动力学的角度,综合利用理论分析、试验和数值计算等手段研究煤层变形与瓦斯运移耦合系统的动力学行为,得到以下主要创新性结论: (1)对低瓦斯矿、高瓦斯非突出矿和高瓦斯且突出矿的煤样进行的应力-应变全程的非Darcy流渗透特性试验,结果表明,低瓦斯矿煤样的渗透率在峰后随应变单调增加;高瓦斯非突出矿煤样在峰后的渗透率变化幅度很小;高瓦斯且突出矿煤样的渗透率在ε=1.4%处出现谷值、在ε=2.7%处剧增,其他点起伏不大;在相同应变下,低瓦斯矿煤样的渗透率大于高瓦斯非突出矿煤样的渗透率,高瓦斯非突出矿煤样的渗透率大于高瓦斯且突出矿煤样的渗透率;煤样的非Darcy流β因子和加速度系数随应变的变化趋势与渗透率相反;破碎煤样渗透试验结果表明,渗透率、非Darcy流β因子与孔隙度的关系可以用幂函数来拟合。 (2)在讨论了煤层的破坏形式和变形状态、剪切屈服和拉伸破坏后的流动法则及变形状态的转换条件、瓦斯压力对D-P准则和Lagrange准则材料常数的影响的基础上构建了煤层的本构关系。 (3)以煤层孔隙度和瓦斯压力为桥梁建立煤层变形运动与瓦斯在煤层中运移之间的耦合关系,构建了一种煤层变形与瓦斯运移耦合动力学模型,该模型考虑了煤层变形的三种变形状态(弹性变形、剪切屈服和拉伸破坏)和瓦斯的三种运移形式(吸附/解吸、扩散、渗流)。 (4)采用显式快速Lagrange算法构造了煤层变形与瓦斯运移耦合动力学响应的计算方法。其中,瓦斯压力、扩散速度和煤层孔隙度在节点和单元上都要定义。 (5)基于显式快速Lagrange算法,利用Fortran语言编制了煤层变形与瓦斯运移耦合动力学响应计算程序,以大兴矿、崔家沟矿和祁南矿煤层及瓦斯的力学性质为控制参量分别计算了三类煤层(低瓦斯煤层、高瓦斯非突出煤层和高瓦斯且突出煤层)开采后的动力学响应,给出了煤层变形状态、渗透率、非Darcy流β因子、加速度系数的曲面图和瓦斯涌出量的时间历程曲线,以及煤层变形状态的转换。 该论文有图71幅,表10个,参考文献133篇。……   
[关键词]:时变边界系统;变形状态;瓦斯运移;耦合;动力学响应;稳定性;快速Lagrange算法
[文献类型]:博士论文
[文献出处]:中国矿业大学2009年