手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

铀在地下水中化学形态及地球化学工程屏障研究

张东

  本文叙述了含铀极低放废物填埋处置的地球化学工程屏障研究。通过理论计算确定铀在地下水中的化学形式;针对地下水中铀(Ⅵ)的化学形态特点,开展了添加剂实验;利用土壤表面电荷特征,对土壤介质进行了筛选;分别进行了静态吸附实验和柱迁移实验。利用化学热力学平衡分析模式、地球化学条件及已知的热力学数据,完成了铀在地下水中存在形式和迁移形态的理论计算。结果表明场址地下水中U(Ⅵ)主要以络合物形态存在,主要有:UO_2(CO_3)_2~(2-)、UO_2(CO_3)_3~(4-)、UO_2CO_3~0、UO_2(HPO_4)_2~(2-)等,占绝对优势(>99%);其次为UO_2(OH)_2~0和UO_2(OH)~+、UO_2~(2+)等,但不足1%。添加剂实验结果表明大部分添加剂没有达到改善基础物料吸附性能的效果,甚至起到反效果;还原性添加剂Na_2S等难于实现铀(Ⅵ)→铀(Ⅳ)的还原沉积;唯有第Ⅲ号土样,即产生于场址的橙黄色砂质亚粘土,对铀的吸附力很强,实验表明,Ⅲ号土空白样的K_d值高达1228.4ml.g~(-1),综合其土粒结构、岩性、来源广泛性等因素,选定为地球化学屏障材料的首选,对其进行了进一步的实验研究。土样表面电荷测定结果表明:Ⅲ号土样的正电荷值高达9.60mmol/100g,居各样品之首,清楚地表现出K_d值与岩土正电荷值的正向相关性,反映了正电荷胶体对铀酰络合阴离子的强吸附机制。“Ⅲ号表层土样”与“Ⅲ号深层土样”的对照静态实验结果表明:“Ⅲ号表层土样”各粒径组与“Ⅲ号深层土样”的主要矿物组成及含量相同;表层土样随粒径减小其表面正电荷降低,而深层土样的表面正电荷几乎比前者高一倍;表层土样随粒径减小其对铀的吸附比降低,而深层土样基本没有变化;两类样品均随pH值的升高,吸附比增大;均随铀浓度的增大,吸附比先增大再缓慢下降;均随固液比的增大,吸附比增大;表层样品在常温下吸附比最大;两类样品均在14天左右达到吸附平衡;各个实验条件下,深层样品的吸附比均比表层样品相应的吸附比高数倍至一个数量级。实验结果表明:铀络合物离子在土样中的吸附滞留量正向相关于表面正电荷值,为静电吸附机制。深层土样加入Ca(OH)_2后大大改善了吸附能力,吸附比高达1.9×10~4ml.g~(-1);加入炭质砂岩后也改善了吸附能力,且吸附比与加入量基本成线性关系。动态柱迁移实验结果表明:实验条件下得出的吸附比比静态法得出的吸附比普遍小1个量级。主要是由于在实验条件下铀的吸附未达到平衡所至,但该条件类似于地下水流动时其所携带的铀离子被所流经土壤吸附滞留的状态,因此,动态柱迁移实验获得的吸附比具有实际参考价值。……   
[关键词]:;极低放废物;化学形态;地球化学屏障;表面电荷;吸附比;静态法;动态法
[文献类型]:博士论文
[文献出处]:中国工程物理研究院2005年
App内打开