手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

平面向量场极限环分支的方法及应用研究

谭欣欣

  动力系统的分支理论是常微分方程定性理论的重要研究领域之一,主要研究依赖于参数的向量场的全局轨线拓扑结构随参数变化的规律。就平面向量场的分支理论而言,对于极限环分支的研究已成为人们关注的主要问题。D. Hilbert在1900年展望20世纪数学的未来时,提出的著名的“23个数学问题”的第16个问题,就是寻求平面向量场极限环个数的最小上界,以及这些极限环可能出现的相对位置。上世纪80年代以来这一问题的研究已与分支理论相结合。有许多数学家致力于研究Hilbert第16问题或1977年由V. I. Arnold提出的它的弱问题。然而,这一问题即使对于二次Hamilton扰动系统仍没解决。弱化的Hilbert第16问题,就是确定Abel积分的零点个数。它将平面Hamilton向量场在多项式扰动下分支出的极限环个数的最小上界归结于相应的Abel积分A(h)在其紧分支△中孤立零点的个数(计重数)的最小上界。但因为人们对高次方程求解的困难,因此,对Abel积分零点个数的求解举步维艰,所以对弱Hilbert第16问题的研究仍然是当今的热门课题之一。本文围绕上述问题展开研究,主要内容可概括如下:1.利用Picard—Fuchs方程、椭圆积分的性质以及常微分方程解析理论,证明了对一类具有双中心的三次Hamilton可积系统,在一般三次多项式扰动下,其Abel积分零点个数的上确界为3,即在每个中心型奇点外围能而且只能扰动出3个极限环。而文献[66]得到的结果是其上界为4,因此本文改进了已有的结论。2.提出了求解Abel积分零点个数的代数方法。与已有的研究方法不同,我们从Abel积分生成元和其各阶微分所组成的行列式的定号性来判别Abel积分零点的个数,因此可借助于符号运算系统计算,从而将极限环分支的研究从定性化转向定量化。并用此方法从理论上推导且结合数值计算验证,证明了一类以非轴对称、非退化三次曲线为Hamilton函数的Hamilton二次系统,经二次多项式微扰最多能分支出两个极限环,而且能分支出两个极限环。而且这两个极限环还具有位置上的任意性。3.研究了二次非Hamilton可积系统的极限环分支。首先在Jiang Yu and ChengzhiLi(2002)的工作基础上,研究了直线a/c=3/2上,当b>2时一种Q_3~R类可积非Hamilton系统的环性;然后采用将Abel积分进行幂级数展开的方法,解决了一类双曲线边界二次系统单中心环域的Poincare 分支问题,这种方法更适用于高次多项式系统;最后讨论平面向量场极限环分支的方法及应用研究了具有双曲线与赤道弧为边界的双中心周期环域二次系统的Poincare‘分支,给出了此系统出现极限环的(0,3)分布或出现一个三重极限环的具体的构造方法。 4.利用平面向量场极限环分支的Hopf分支理论,研究了一类具有非线性传染率灯’一,S’的sIRs传染病传播的动力学模型。首次给出了当模型中指数为p全2,q之1的一般整数时,系统的平衡点的精确表达式,并给出了Hopf分支的数值计算及模拟结果。 本文给出的这种简化平衡点坐标表达式的方法适用于一般情形,从而使奇点焦点量的计算简洁和可行。为进行系统的H叩f分支的研究以及定性分析创造了条件。 其次,建立了带有潜伏期及终身免疫的SARS传染病SE工R动力学模型及参数辨识系统。论证了该类控制模型的主要数学性质以及系统的流不变性和弱不变性。根据官方网站公布的疫情数据辨识了SE工R模型中的参数,数值模拟结果表明了模型、算法的正确性和有效性。关键词:平面向量场;极限环分支;弱Hi!bert第16问题;Poi ncar‘分支;Abel积分; pi“ad一Fuchs方程;Hopf分支;传染病模型……   
[关键词]:平面向量场;极限环分支;弱Hilbert第16问题;Poincaré分支;Abel积分;picad-Fuchs方程;Hopf分支;传染病模型
[文献类型]:博士论文
[文献出处]:大连理工大学2005年