手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

组织工程化人工神经修复长节段周围神经损伤的实验研究

张伟

  【背景】 周围神经损伤(peripheral nerve injury, PNI)是临床最常见的创伤之一。随着现代建筑业、交通运输业的发展以及局部战争的频发,PNI的发生率也逐年呈上升趋势。由于成熟的神经元不能分裂和复制,与其它组织相比,周围神经损伤后的再生和恢复效果还很不理想。若不能及时救治,可导致肌肉功能丧失、感觉功能损害、功能恢复不佳甚至导致病人终生残疾,给社会带来巨大的损失和沉重的负担,已成为世纪医学挑战之一。 目前国内外修复周围神经损伤的主要策略是桥接神经断端,促进神经轴突再生,克服再生屏障。20世纪90年代Lundborg利用神经再生室模型证实神经趋化特异性以来,神经导管修复神经缺损的优势逐渐被人们认识和接受。随着组织工程技术的飞速发展,周围神经损伤的修复又取得了新的进展。组织工程技术治疗PNI的基本模式是―种子细胞+细胞因子+生物支架‖。利用具有良好的组织相容性和生物活性的组织工程化人工神经搭载神经干细胞修复PNI取得了一定得疗效。 【目的】 1、体外培养骨髓间充质干细胞(BMSCs),并在体外诱导分化为骨髓源性神经干细胞,实现短时间内获得增殖能力较强的神经干细胞的要求。 2、以PLGA为原料制作管壁具有三维结构的中空的可降解组织工程用神经导管。 3、利用IKVAV自组装多肽构建组织工程化人工神经。 4、将可降解神经导管、IKVAV自组装多肽凝胶、骨髓源性神经干细胞和神经生长因子构建的组织工程化人工神经移植至坐骨神经缺损处,观察神经再生和功能恢复情况,探讨新型组织工程化人工神经修复周围神经的可行性。 【方法】 1、利用全骨髓培养法进行原代骨髓间充质干细胞的培养。以3月龄大白兔为取材对象,于胫骨平台下抽取2~3ml骨髓,加入Percoll液中离心,10%FBS,1%抗生素的DMEM培养液重悬后,接种于培养皿中培养。BMSCs达到亚融合后,去除培养液,加入诱导液(DMEM培养基、全反式视黄酸、bFGF等),诱导BMSCs向类施万氏细胞分化。 2、以PLGA为原料,通过静电纺丝技术制作中空的、管壁具有三维结构的可降解神经导管,并进行神经导管的体外、体内生物相容性测试。 3、以IKVAV自组装多肽为原料,在一定条件下触发自组装形成多肽凝胶,并进行其与神经干细胞的相容性初步测试。 4、将构建的组织工程化人工神经移植进行神经缺损修复实验。以新西兰大白兔为动物模型,实验动物随机分为3组:A组:自体神经移植组,B组:神经导管+神经干细胞+NGF,C组:神经导管+IKVAV自组装凝胶+神经干细胞+NGF。于术后3、6、9、12周,应用肌电图、肌肉湿重测量、HE染色、免疫荧光染色、透射电镜等观察方法观察神经干细胞的存活、周围神经功能的恢复情况。 【结果】 1、流式细胞仪鉴定结果表明成功分离、培养BMSCs,诱导后经S-100免疫细胞化学染色鉴定为类SC细胞,细胞纯度达87%。 2、利用新型的静电纺丝工艺能够制作出管壁具有三维结构的组织工程用神经导管,导管外径3mm,内径2.5mm,管壁纤维直径约18μm,呈螺旋上升结构。导管管壁孔隙率约85.4%,支架具有良好的生物相容性,降解时间约为3个月。 3、在实验室条件下成功触发IKVAV多肽自组装成凝胶,透射电镜显示其纤维直径为10-30nm,长度可达数百纳米,纳米纤维交织成立体网状结构。测定神经干细胞在凝胶上的黏附率及生物活性显示其有良好的生物相容性。 4、构建的人工神经修复长节段坐骨神经缺损,术后3组动物均出现不同程度的足底溃疡,恢复情况以A组最好,C组次之,B组最差。神经肌电图、小腿三头肌湿重结果提示C组神经修复效果接近A组(P > 0. 05)而优于B组(P < 0. 05)。HE染色观察12周时A组见较多束状组织,神经纤维排列整齐,神经纤维较为粗大,髓鞘较厚。B、C组切片可见PLGA纤维基本降解、消失。C组亦可见较多束状的组织,呈波浪形,神经纤维较A组稀疏,组织间可见新生毛细血管,胶原组织较少。而B组中神经纤维排列较杂乱,胶原组织较多,神经纤维细小。透视电子显微镜观察:A组中有大量的有髓神经纤维,排列均匀。B组有髓神经纤维形态不规则,数量较少,少数神经纤维髓鞘轻度肿胀,呈脱髓鞘改变。C组中再生有髓神经纤维较多,但分布不均匀,纤维直径和髓鞘厚度大小不等,神经纤维间有较多新生血管形成。12周时组织工程化人工神经切片在荧光显微镜下观察到在神经损伤处有GFP荧光表达,表明神经干细胞在人工神经内仍然存活。 【结论】 1、采用全骨髓培养法进行BMSCs,可以获得大量高纯度BMSCs,经诱导后可以转化为类SC细胞,可作为神经修复的种子细胞。 2、利用静电纺丝技术制作的PLGA可降解神经导管,具有良好的生物相容性和适当的降解时间,可以用来修复PNI。 3、IKVAV多肽可以自组装形成凝胶,凝胶是由纳米纤维交联形成的类似细胞外基质的物质,具有良好的生物相容性和生物活性,可以作为神经组织工程支架。 4、组织工程化人工神经修复坐骨神经具有较好的疗效,植入体内的神经干细胞可存活3个月以上,神经缺损处发现新生轴突,坐骨神经功能得到部分恢复。……   
[关键词]:组织工程;神经导管;周围神经损伤;自组装多肽;神经干细胞;骨髓间充质干细胞
[文献类型]:博士论文
[文献出处]:第二军医大学2011年