手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

刺参岩藻多糖对神经干/前体细胞的增殖作用及其机制研究

张月杰

  刺参(Stichopus japonicus),归属于无脊椎动物棘皮动物门(Echinodermata)海参纲(Holothurioider)刺参科(Stichopodidae)。自古以来,海参不仅被冠为海八珍之首,而且历来被认为是一种药食两用的滋补品。刺参多糖类物质具有广泛的生物学活性,诸如抗凝血、增强免疫力、抗肿瘤、抗病毒、调节脂类代谢以及组织发生等。近年来,硫酸化多糖对神经干/前体细胞(NSPCs)发育的影响成为神经生物学及糖生物学研究的新热点。硫酸化多糖作为中枢神经系统(CNS)细胞外基质的重要成分,其在神经细胞增殖、分化和迁移等过程中发挥极其重要的调节作用。然而,单纯的硫酸化多糖,特别是海洋生物来源的酸性硫酸化多糖对NSPCs发育的研究较少。 我们从鲜刺参体壁中分离纯化得到单一组分的岩藻多糖(HS),对其理化性质和结构进行分析;研究HS对NSPCs存活、增殖、聚集和凋亡的影响,结果发现HS明显地促进神经球的形成;并进一步探讨其促进NSPCs形成神经球的原因以及可能的作用机制。期望为深入认识硫酸化多糖在CNS中的生物学功能提供新的线索,同时为NSPCs移植用于神经系统退行性疾病及CNS损伤的临床治疗提供一些新的思路。本论文的研究内容和结果主要有以下几个方面。 1刺参岩藻多糖的提取、纯化以及活性多糖组分的筛选 首先采用胃蛋白酶/胰蛋白酶双酶解,60%乙醇沉淀获得刺参粗多糖。经大孔吸附树脂柱脱色后,采用DEAE-Sepharose柱进行第一次分离纯化。用2M氯化钠溶液进行线性洗脱,紫外210nnm、280nm结合苯酚硫酸法监测流出的各组分,得到A、B、C、D四个糖组分,然后将有活性的组分(组分D)用Superdex 200柱进行二次分离纯化。用0.15mol/L氯化钠溶液洗脱,紫外210nm和280nm同时监测,收集各组分,再利用Sephadex G-25柱脱盐,最后冷冻干燥得到活性组分HS。粗多糖(CHS)得率为0.23%,精制多糖(FHS)得率为0.053%。 2刺参岩藻多糖(HS)理化性质和结构的分析 凝胶过滤法和紫外扫描初步确定HS为均一物质,分子量为4.23×105Da。HS为白色絮状物,无色、无味,易吸湿;不含蛋白质和核酸。HS中岩藻糖含量为38.12%,糖醛酸含量为16.52%,硫酸基含量为32.64%。单糖组成分析结果表明,HS含有岩藻糖,且相对含量较高;微量的半乳糖,岩藻糖与半乳糖的摩尔比为14.29。红外光谱(IR)显示HS具有硫酸化多糖的特征吸收峰,即1250.96cm-1的S=O的伸缩振动峰和850.78 cm-1的C-O-S的伸缩振动峰,且提示HS由p-D-吡喃糖组成。1HNMR及13C NMR波谱数据进一步提示HS中糖残基可能为β-构型。 3刺参岩藻多糖(HS)对体外培养NSPCs的增殖作用 首先,建立NSPCs悬浮培养体系。采用酶解与机械吹打相结合的方法从孕14天大鼠的大脑皮质分离NSPCs,以无血清悬浮培养方式体外培养NSPCs并形成神经球,确定适合的种板密度(2-3×105cells/mL)、培养时间(72-96 h)以及HS的剂量范围;采用免疫细胞化学方法对其干细胞特性和多向分化潜能进行鉴定。然后,通过MTT法、BrdU掺入法以及神经球形成实验测定HS对NSPCs的增殖作用。结果表明HS能够以剂量依赖性的方式增加NSPCs的活力;在与生长因子同时作用时,HS可以增加FGF-2对细胞增殖的促进作用,而对于EGF的增殖作用没有影响。BrdU掺入法证实了HS能够促进NSPCs的增殖,并且与FGF-2具有协同性。在较高浓度范围(1-8μg/mL)内,单独的HS能够以剂量依赖性的方式促进NSPCs形成神经球。同样,HS可以增加FGF-2对于神经球形成的促进作用。HS与FGF-2协同促进神经球形成的有效剂量在4-8μg/mL之间。有血清培养条件下,HS同样可以促进神经球的形成,但神经元突起数量减少,神经球之间联系更加直接。最后,采用Hoechst33342/PI双染法检测HS对NSPCs凋亡的作用。结果显示,在HS和/或FGF-2各个处理组中,没有凋亡的细胞出现。 4刺参岩藻多糖(HS)促进神经球形成的内在机制 实验中我们观察到HS处理组细胞形成神经球的时间要早于对照组;同时,在有血清培养条件下,HS也可以促进已经分化的细胞聚集形成细胞团。从以上两方面综合分析,我们认为HS促进NSPCs形成神经球并不仅仅是由增殖作用引起的。因此,进一步从细胞聚集方面分析HS促进神经球快速形成的原因。结果表明,在NSPCs培养初期,HS能够促进单个细胞聚集,促使3-5个细胞的细胞团生成,这种微环境的形成有利于NSPCs进一步的增殖,从而加速了神经球的形成。但HS诱导的NSPCs聚集及运动性的影响不能用趋化性迁移来解释。进一步的细胞周期实验结果显示HS能够促使更多的细胞进入S期,HS处理组的S-期细胞数是对照组的2.8倍,加速细胞增殖。也就是说,HS的促增殖以及促聚集作用共同促进了神经球的快速生成,因此,HS有可能成为促进NSPCs增殖以及神经球形成的良好辅助分子。 5刺参岩藻多糖(HS)对NSPCs的作用与NF-κB转录因子的激活有关 NF-κB广泛地存在于神经系统,在神经发生、神经保护以及突触可塑性等方面具有重要作用。文献报道NF-κB信号途径可以调节细胞对于有丝分裂原的反应,而且TNF-α诱导的NSPCs聚集及增殖是通过NF-κB信号途径的激活实现的。因此,我们假定HS对于NSPCs增殖和聚集的作用是通过NF-κB的激活来实现的。采用NF-κBP65ELISA检测细胞核中P65蛋白的含量,以此表示转录因子的激活程度。结果显示,在5-50μg/mL剂量范围内,细胞核内的P65蛋白含量以剂量依赖性方式增加;在50μg/mL浓度时,细胞核内P65蛋白的含量比对照组增加了近50%,初步结果表明HS对NSPCs的作用与NF-κB转录因子的激活有关。 6刺参岩藻多糖(HS)对NSPCs的作用并不影响神经球的干细胞特性以及多向分化潜能 HS来源于海洋无脊椎动物,没有潜在的病毒感染;更为重要的是HS抗凝活性较低,不易引起内出血等不良反应,有可能成为促进NSPCs增殖以及神经球形成的良好辅助分子。因此,本文在研究发现HS促进NSPCs增殖和神经球形成的基础上,对其诱导生成的神经球干细胞特性及其多向分化潜能进行鉴定。结果显示,HS并不改变神经球的特征性蛋白Nestin的表达;经HS(4μg/mL)诱导形成的神经球仍具有多向分化潜能,可以分化成04+的少突胶质细胞、GFAP+的星型胶质细胞以及MAP2+的神经元。这些结果表明刺参岩藻多糖(HS)并不影响神经球的干细胞特性及其多向分化潜能。 本研究取得的成果和结论主要有: (1)从刺参体壁中分离得到均一的硫酸化多糖组分HS,分子量为4.23×105Da,岩藻糖含量为38.12%,糖醛酸含量为16.52%,硫酸基含量为32.64%。 (2)首次确定HS能够促进NSPCs增殖,并且与成纤维细胞生长因子(FGF-2)有协同作用。HS不会引起细胞凋亡。 (3)首次确定HS能够促进NSPCs的聚集,在细胞培养初期能够促进神经球的快速形成;同时促进NSPCs分裂,使更多的细胞进入S期,这两种作用共同促进神经球的形成。 (4)初步确定HS对于NSPCs的促增殖和促聚集作用与NF-κB信号途径的激活有关。……   
[关键词]:硫酸化多糖;刺参;分离纯化;理化性质;结构;神经干/前体细胞;增殖;凋亡;FGF-2;神经球;聚集;NF-κB
[文献类型]:博士论文
[文献出处]:山东大学2010年