自动化技术
GRU递归神经网络对股票收盘价的预测研究
2018-11-15
股票市场是个多变且复杂的非线性动力学系统,股票价格是个具有时序性的数据,基于此选用具有时间记忆功能的GRU(Gated Recurrent Unit)递归神经网络模型来处理时间序列数据的预测问题。本文选取上证中18支证券行业股票的日收盘价数据,该数据截止日期为2017年12月29日,每支股票数据量为1000天。本文作了2个实证研究,一方面用GRU递归神经网络预测未来10天的股票日收盘价,实证结果表明,GRU递归神经网络的测试误差和验证误差都比其余2个模型得到的同种类型的误差要小,而GRU递归神经网络在预测未来10天日收盘价的精度达到了98. 3%,体现了GRU强大的学习能力和泛化能力。另一方面,对比序列长度分别为240天、120天以及60天时,GRU递归神经网络的测试误差、预测收盘价的方差以及验证误差。结果表明面对不同序列长度的数据集,GRU预测精度都很高,序列长度为240天的GRU模型得到的测试结果的方差明显低于其他2个,说明其稳定性更好。
领 域:
关键词:
格 式:
PDF原版;EPUB自适应版(需下载客户端)
0 24
下载全文(PDF文件/409K)
计算机与现代化
2018年11期
相似文献
更多相似文献