手机知网 App
24小时专家级知识服务
打 开
农作物
基于实测光谱的植被指数对水稻叶面积指数的响应特征分析
叶面积指数(LAI)是目前最常用的农业生态监测指标,可以为农作物的病虫害监测、作物长势监测、碳循环、生物量估算及作物估产提供依据。植被指数(VI)是卫星LAI产品生产的重要数据源,但不同VIs对植被LAI的响应特征具有一定的差异性。以江西省水稻为例,基于实测光谱提取了水稻实测VIs,结合实测LAI,讨论了归一化植被指数(NDVI)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)和修正的土壤调节植被指数(MSAVI)四种常见VIs对LAI的响应特征,并与MODIS LAI备用算法的计算结果进行了对比分析,研究了不同VIs用于LAI产品反演的可行性及存在的问题。通过对不同实测VIs-LAI模型精度的评估,分析其应用于LAI反演的适应性,结果显示EVI,SAVI和MSAVI比NDVI有更好的适应性,其中EVI效果最优。此外,通过对比MODIS LAI备用算法查找表,发现针对MODIS LAI备用算法中草地与谷物作物这一地表覆盖大类,在LAI>4时,NDVI出现饱和;而实测水稻作物的NDVI在LAI>2时开始出现饱和;且当NDVI相同时,查找表LAI远大于实测LAI,MODIS备用算法中使用的地表覆盖产品分类过粗可能是造成这一结果的主要原因。因此MODIS LAI备用算法在该区域水稻LAI监测中可能产生较大误差,有必要改用其他VIs优化该备用算法。通过对比分析四种VIs模型对LAI的预测误差,发现EVI,SAVI和MSAVI精度明显优于NDVI,基于EVI的模型平均预测误差仅为MODIS LAI备用算法的1/6,基于实测NDVI反演算法的1/2,因此设计基于EVI的LAI算法对LAI的反演精度有一定的提升空间。
9 413
光谱学与光谱分析
2018年01期

搜 索