手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

基于压缩卷积神经网络的交通标志分类算法

张建明;王伟;陆朝铨;李旭东

  针对车载计算系统很难满足大型卷积神经网络对计算资源和存储空间需求的问题,提出了一种基于压缩卷积神经网络的交通标志分类算法.首先挑选原始VGG-16和AlexNet在GTSRB数据集上进行分类训练;然后对网络模型进行基于泰勒展开的通道剪枝删除冗余的特征图通道;接着使用三值量化方法对剪枝后的网络模型进行参数量化;最后进行了通道剪枝、参数量化和组合压缩的实验.结果表明:本算法有效地压缩了网络模型,减少了运算次数.最终组合压缩的VGG-16网络模型的存储空间减少一半,参数数量为原始模型的9%,每秒浮点运算次数减少为原始模型的1/5,模型加载速度提升了5倍,测试速度提升了2倍,精度为原始模型的97%.……