手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

激光熔覆原位合成陶瓷相增强Fe基熔覆层研究

杜宝帅

   磨损作为工程构件的三大主要失效形式(疲劳、磨损、腐蚀)之一,在工程应用中造成巨大的经济损失。在普通金属材料表面制备耐磨熔覆层,改善材料表面的物理、化学性质增强构件的抗磨损能力,成为了提高产品使用性能,发展维修与再制造技术,延长机械产品使用寿命的重要途径。本文利用激光(CO_2、Nd:YAG)作为热源,结合原位自生技术在低碳钢基体上熔覆制备了TiB_2、TiC、TiB_2+TiC增强Fe基耐磨熔覆层,并对熔覆层的微观组织、物相构成、增强相的生长机制、熔覆层磨损性能进行了系统研究,分析了影响熔覆层组织及性能的因素和规律。 预涂合金粉末的组分和工艺性能是激光熔覆制备原位自生陶瓷相增强Fe基熔覆层的关键因素。利用FeTi30+FeB16预置粉末,采用CO_2激光熔覆制备了TiB_2增强Fe基熔覆层,所得Fe-Ti-B复合熔覆层中TiB_2呈条、块状均匀分布于基体之中。当熔覆粉末中B,Ti原子比例在1.8:1-2:1之间时可以获得以TiB_2+α-Fe为物相组成的熔覆层,该熔覆层具有较好的抗裂性。采用FeTi30+石墨作为预置粉末,CO_2激光熔覆可以制备原位合成TiC/Fe熔覆层,试验表明在综合考虑石墨和Ti元素在熔覆过程中的烧损量的情况下,预置粉末中Ti,C原子比为1:1.3的配比可以促进TiC增强相的生成,提高其在熔覆层中的含量并避免脆性相Fe_2Ti及高碳马氏体的产生。所得熔覆层中TiC以花瓣状和枝晶状存在于Fe基基体之中。 采用Nd:YAG固体激光,以Fe+Ti+B_4C为预置粉末,制备了TiB_2+TiC联合增强Fe基熔覆层。当预置合金粉末中Ti和B_4C含量按照反应3Ti+B_4C=2TiB_2+TiC配制,采用较高功率密度时,易因熔覆过程中Ti元素的烧损导致熔覆层中产生Fe_3(B,C)脆性相,而且所得熔覆层中增强相的含量较低。优化试验表明,采用Fe45-Ti41.12-B_4C13.88(wt.%)作为预置粉末,较低功率密度时,所得熔覆层物相组成为TiB_2,TiC和α-Fe,避免了脆性相的产生,同时增强相TiB_2和TiC的含量较高。熔覆层致密、无缺陷,且同基材呈良好冶金结合,TiB_2和TiC增强相均匀分布于熔覆层之中,TiB_2呈条、块状,TiC粒子为尺寸较小的等轴状和花瓣状。TiB_2和TiC可以单独形核、生长,达到双相粒子复合强化的效果。而且增强相生长浓度环境的改变以及增强相之间的竞争生长,使得其在熔覆层基体中的分布更加分散。随着熔覆层稀释率的减小,增强相的含量和尺寸变大;随着熔覆层稀释率的增加,增强相的含量和尺寸减小。 对熔覆层合金体系进行热力学分析表明Fe-Ti-B,Fe-Ti-C以及Fe-Ti-B-C体系中TiB_2、TiC在300K-2000K区间为稳定存在物相,预置粉末中增强相生成元素的相对原子比例对熔覆层的物相组成具有重要影响。预置合金粉末在激光作用下,首先经历加热过程形成低熔共晶,之后通过元素在熔体中的扩散、化合反应生成细小增强体(TiB_2、TiC),在激光持续加热和反应放热的耦合作用下,生成的增强体还可溶解于熔体之中,在随后的冷却过程中增强相通过形核-长大方式生长。原位合成的TiB_2和TiC增强相均表现出小平面相特征,激光熔覆快冷过程并未带来增强相生长界面从光滑向粗糙的转变。 TiB2增强相的(0001),{10(?)0}界面能较低,具有较慢的生长速度,增强相粒子的形态表现为以(0001)为基面,{10(?)0}为侧面的棱柱形貌。TiC在形成过程中由于晶核在界面前沿熔体扩散驱动力以及成分过冷的作用下易发生界面失稳,枝晶主干沿着[001]方向发展使增强相生长为花瓣和枝晶状,枝晶端部的显露面为密排{111}平面。此外,在冷凝过程中还会因共晶反应形成细小的棒状和分枝状TiC。(TiB_2+TiC)/Fe熔覆层中TiB_2和TiC可以独立形核长大,其晶体生长惯习性并未改变,但在熔覆层内局部区域发现了TiB_2依附TiC长大的现象。通过原位反应生成的增强相同基体界面结合良好、洁净、无附着物及非晶相。 室温干滑动磨损试验表明,原位合成TiB_2/Fe、TiC/Fe和(TiB_2+TiC)/Fe熔覆层具有良好的抗磨损性能,在同样磨损条件下,熔覆层的摩擦系数平均比母材低0.1-0.15。熔覆层内大量增强相(TiB_2、TiC、TiB_2+TiC)的存在使得磨轮在摩擦过程中对材料的粘着和犁削作用明显减弱,而且增强相在磨损过程中还起到承受载荷以及对熔覆层基体钉扎强化作用,因此使得熔覆层抗磨损性能得到显著提高。原位合成TiB_2/Fe熔覆层磨损体积为低碳钢Q235的1/17-1/19,其磨损机制主要为显微切削和硬质相剥落;原位合成TiC/Fe熔覆层的磨损体积为Q235基材的1/15-1/16,其磨损机制为显微切削和区域选择性粘着磨损;原位合成(TiB_2+TiC)/Fe熔覆层的磨损机制为显微切削、划擦,由于TiB_2和TiC的互补效应,增强相的分布均匀而且平均自由间距减小,从而使得熔覆层表现出最优的抗磨损能力,其磨损体积约为Q235金属的1/21。……   
[关键词]:激光熔覆;熔覆层;原位合成;金属基复合材料;磨损性能
[文献类型]:博士论文
[文献出处]:山东大学2009年