手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

城市生活垃圾直接气化熔融焚烧过程应用基础研究

胡建杭

   城市生活垃圾直接气化熔融焚烧处理技术能有效控制焚烧灰渣中的重金属和二恶英类有机物潜在的污染,避免与控制焚烧过程中二恶英类有机物的合成,具有理想的减容化、无害化和资源化效果。该技术是一种垃圾处理终端技术,在科学界,自从提出其概念并进行工业化应用以来,受到环保专家们的广泛关注,被认为是21世纪垃圾处理的新型可行技术和垃圾环保最具发展前景的新技术。因此,城市生活垃圾直接气化熔融焚烧处理已经成为废物处理领域新的研究热点。 本文结合我国城市生活垃圾的组份特性,系统地开展了城市生活垃圾直接气化熔融焚烧过程的应用基础研究,为探索和创新城市生活垃圾新型焚烧处理技术提供一定的理论参考。 研究分析了升温速率和气氛含氧量对生活垃圾气化焚烧过程动态产气特性的影响。在不同温度段,反应特征的变化较为明显,各个温度段的反应产物(CO、CO_2、H_2和CH_4)也都有很强的倾向性。温度和停留时间是决定气化燃烧过程气化率的主要因素。升温速率快慢影响瞬时产气量的多少,但是变化趋势基本相似;瞬时产气量因气化氧气浓度的增加而增加。干燥的混合垃圾在TG-DTG热分析过程主要可分为低温热分解气化阶段和高温热分解残留物燃烧阶段。升温速率不同,反应停留时间也不同,导致生活垃圾气化燃烧各阶段的温度范围有所变化,但是热失重最终趋势却不随升温速率的加快而改变。含氧量越高,燃烧反应就越剧烈,反应速率就越快。 采用Doyle积分法依据TG-DTG数据建立了原生活垃圾气化燃烧动力学模型,拟合获得了生活垃圾气化燃烧第一阶段的反应机理方程均为f(a)=3/2(1-a)~(4/3)((1-a)~(1/3)-1)~(-1),第二阶段对应于10%、21%和56%含氧量气氛下的反应机理方程分别为f(a):3(1-a)~(2/3)、f(a)=2(1-a)~(3/2)和f(a)=(1-a)~2,并求得了不同升温速率和不同气氛下的动力学参数。 在灰渣熔融过程中,分析了灰渣中主要成份CaO-SiO_2-Al_2O_3三元组份在熔融过程中可能发生玻璃体转化的各种复合反应,理论分析了各种反应的标准吉布斯自由能△G~θ和反应平衡常数K等热力学参数。研究分析了气氛、灰渣成分对灰渣熔融特性的影响。研究得出,为了降低灰渣的熔融温度,应控制灰渣中的CaO含量在33%和酸碱度在1左右,并实现在弱还原性的气氛下进行熔融处理。依据DSC曲线建立了焚烧灰渣熔融过程动力学模型,求出灰渣熔融过程的动力学参数。动力学模型为生活垃圾的直接气化熔融焚烧工艺设计提供了理论依据。 实验研究了六种重金属(Hg、Pb、Cd、Zn、Cu、Cr)在直接气化熔融焚烧过程中的转化迁移特性。分析焚烧温度、熔融时间、气氛和含水率对重金属分布的影响。Hg、Pb和Cd是挥发性重金属,容易挥发转移到飞灰和烟气中;Cu和Cr是难熔性重金属,表现出很好的稳定性。Zn因氧化而不易挥发。灰渣的熔融对重金属的挥发有一定抑制作用,而HCl的存在却对重金属的挥发有促进作用。 实验分析研究得出:焚烧炉内固硫剂固硫效果的好坏主要与反应温度、Ca/S、气体停留时间和固硫剂等有关。CaO的最佳固硫温度在800-900℃,最佳Ca/S是2.5~3左右。添加Fe_2O_3和草木灰有助于加强CaO的固硫效果。直接气化熔融焚烧处理可实现二恶英近零排放,熔渣中二恶英含量仅为0.001ng-TEQ/g,烟气中二恶英含量为0.072ng-TEQ/g。 自行研发了半工业城市生活垃圾直接气化熔融炉焚烧系统(处理能力分别为1t/d和10t/d)并进行了批量试验。分析研究了处理能力对焚烧炉炉内温度和燃烧效率的影响,酸性气体(SO_2、NO_x和HCl)、二恶英类有机物和熔融渣的重金属浸出量等二次污染物的排放特性。试验表明,该焚烧炉系统在处理原生城市生活垃圾时,具有稳定高效的处理能力,可以实现二次污染物尤其是二恶英的低排放化和灰渣的回收利用资源化。 研究表明,城市生活垃圾经过该直接气化熔融焚烧处理后,不仅可以实现垃圾燃烧热的利用,还可以降低二次污染物的排放和实现熔融渣的直接回收利用,具有理想的“三化”效果,应用前景广阔。……   
[关键词]:城市生活垃圾;气化;熔融;焚烧;动力学
[文献类型]:博士论文
[文献出处]:昆明理工大学2007年