手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

金纳米微粒与某些药物小分子相互作用的分子光谱及其分析应用研究

鲁群岷

   金纳米微粒是一类重要的纳米材料,因其具有独特的物理-化学性质在许多领域中表现出潜在的应用价值,引起了人们浓厚的研究兴趣,在纳米微粒的分析应用研究方面占有十分重要的地位。近年来,共振Rayleigh散射(Resonance Rayleigh Scattering,RRS)技术作为新兴的、简便的、高灵敏的分析技术受到人们的广泛关注。目前,金纳米微粒不作化学修饰直接作探针共振瑞利散射法已初步应用于生物大分子、碱性染料、阳离子表面活性剂和一些药物的研究和测定。随着研究的不断深入和发展,发现金纳米微粒作探针分子光谱法(如共振瑞利散射法、共振非线性散射法、分光光度法和荧光法等)测定药物灵敏度较其它试剂测定同样药物的灵敏度高数倍至一个数量级,这就为某些痕量药物的测定创造了条件,也为金纳米微粒在分子光谱领域的研究开拓了更广阔的空间。本文在国家自然科学基金的资助下,利用共振瑞利散射、共振非线性散射光谱并结合透射电子显微镜技术以及紫外-可见吸收光谱和荧光光谱,从分子水平的层次研究了金纳米微粒与某些药物小分子相互作用的过程、机理以及分析应用研究。开发了直接利用金纳米微粒作探针,简便、快速、灵敏地测定蒽环类抗癌药物表柔比星等、博来霉素类广谱性抗肿瘤抗生素、黄连素、以及药物亚甲蓝的分子光谱新方法。主要研究体系如下: 1.金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物 在近中性至弱碱性介质中,金纳米微粒与表柔比星(EPI)、柔红霉素(DNR)和米托蒽醌(MXT)等蒽环类抗癌药物借静电引力,疏水作用力结合,形成粒径更大的聚集体,导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱,三种结合产物的最大RRS峰均位于313 nm附近,并在510~610 nm之间有一宽的散射带。其散射强度(ΔI)与三种抗癌药物的浓度成正比,对EPI、DNR和MXT的线性范围分别为0.009~0.50,0.010~0.70和0.030~1.20μg·mL~(-1),它们的检出限(3σ)分别为2.7,3.1和9.0 ng·mL~(-1)。文中研究了适宜的反应条件及分析化学性质,并比较研究了反应产物的吸收、荧光和RRS光谱特征,据此发展了一种用RRS技术灵敏、简便、快速测定蒽环类抗癌药物的新方法。 2.金纳米微粒与蒽环类抗癌药物的结合作用对倍频散射和二级散射的影响及其分析应用 研究了金纳米微粒与表柔比星(EPI)、柔红霉素(DNR)和米托蒽醌(MXT)等蒽环类抗生素之间相互作用的二级散射(SOS)和倍频散射(FDS)光谱。考察了其光谱特征、影响因素、适宜的反应条件和共存物质的影响。其中SOS法灵敏度更高,它对表柔比星、柔红霉素和米托蒽醌的检出限分别为3.3、3.8和5.2 ng·mL~(-1),而其线性范围分别为0.011~0.5、0.013~0.5和0.017~0.8μg·mL~(-1)。据此提出了一种用SOS技术测定蒽环类抗癌药物的新方法。3.金纳米微粒作探针高灵敏共振瑞利散射法测定博来霉素和平阳霉素抗生素 在pH 2.5~7.0介质中,金纳米微粒与博来霉素(BLMA_2)和平阳霉素(BLMA_5)等抗生素反应形成聚集体,导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱,其散射强度(ΔI)与两种抗癌药物的浓度成正比,对BLMA_2和BLMA_5的线性范围均为0.008~0.48和0.008~0.48μg·mL~(-1),它们的检出限(3σ)分别为1.6和1.7 ng·mL~(-1)。据此发展了一种用金纳米微粒作探针高灵敏RRS测定博来霉素类抗生素的新方法。应用于人血清及尿液中BLMA_5和BLMA_2的测定,回收率在97.3~102%之间。本文研究了反应产物的RRS光谱特征,适宜的反应条件及分析化学性质,探讨了聚集体的形成和散射增强的原因。 4.用金纳米微粒分光光度法测定小檗碱 在pH 3.0~4.7的柠檬酸钠-盐酸缓冲溶液中,当金纳米微粒与盐酸小檗碱(Ber·Cl)作用形成结合产物时溶液颜色由红变蓝,并使吸收光谱发生变化,最大吸收波长从518 nm红移至660 nm,Δλ达142 nm,显色反应具有高灵敏度,摩尔吸光系数(ε_(660))为1.86×10~5L·mol~(-1)·cm~(-1),小檗碱浓度在2.0×10~(-8)~3.22×10~(-6)mol·L~(-1)的范围内遵循比尔定律。据此建立了用金纳米微粒分光光度法测定小檗碱的新方法。该方法灵敏度高,选择性较好,且简便快速,可用于某些药物及血清和尿样中小檗碱的测定。 5.金纳米微粒作探针共振瑞利散射光谱法测定亚甲蓝 在一种含柠檬酸盐的溶液中,柠檬酸根阴离子自组装于带正电荷的金纳米微粒表面,使金纳米微粒成为一种被柠檬酸根包裹的带负电荷的超分子化合物。在pH 6.5~9.5的中性或弱碱性介质中,它可与亚甲蓝(MB)阳离子借静电引力,疏水作用力结合,形成粒径更大的聚集体(平均粒径从12 nm增至20 nm),这种聚集体的形成在引起金纳米的等离子体吸收带明显红移(Δλ=144nm)的同时,共振瑞利散射(RRS)显著增强并且倍频散射(FDS)和二级散射(SOS)等共振非线性散射也有较大的增强,最大散射峰分别位于371 nm(RRS),280 nm(FDS)和540 nm(SOS)。在适当条件下,散射强度(ΔI)与亚甲蓝的浓度成正比,其中RRS法灵敏度最高,因此金纳米微粒可作为测定亚甲蓝的高灵敏RRS探针,它对亚甲蓝的检出限为21.17ng·mL~(-1),方法简便快速且有较好的选择性,可用于血液中亚甲蓝的测定,文中还结合量子化学方法讨论了有关反应机理和RRS增强的原因。……   
[关键词]:金纳米微粒;共振瑞利散射;共振非线性散射;分光光度法
[文献类型]:硕士论文
[文献出处]:西南大学2007年