手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

炭材料用基体前驱体煤沥青的改性研究

林起浪

  本文进行了炭材料用基体前驱体煤沥青的改性研究。首先对煤沥青的分子结构进行设计,然后分别采用二乙烯基苯(DVB)、对甲基苯甲醛(PMB)对工业中温煤沥青进行了改性,并分析了煤沥青的改性机理;其次探讨了改性煤沥青的工艺、组成与性能之间的关系;最后研究了改性煤沥青的热解动力学、流变行为及中间相转化行为。通过分子设计法对高残炭低粘度煤沥青的分子结构进行设计,提出了高残炭低粘度煤沥青分子结构的模型。煤沥青分子应以稠环芳烃为主,并具有较大的芳香度和适当的缩合度,含有较多的环烷结构和适量的短侧链取代基,具有良好的分子平面性和结构的整齐性。采用FT-IR和~1H-NMR分别对DVB、PMB改性煤沥青的结构进行分析,表明DVB或PMB在对甲苯磺酸的作用下能够与煤沥青中的多环芳烃发生亲电取代反应,使煤沥青中的活性小分子交联形成大分子。此外,DVB在还会发生阳离子型自聚反应。采用SEM对改性煤沥青的形貌进行观察,发现DVB改性煤沥青中出现很多微纤,随着反应程度的加深,微纤在搅拌的作用下相互缠结成核形成小球体;PMB改性煤沥青中也出现很多微纤,随着改性程度的加深,纤维直径越来越大,最后形成分布均匀且线性很好的纤维束。通过对改性煤沥青的工艺、组成与性能的研究发现,工艺条件对改性煤沥青的组成和性能有不同程度的影响,尤其是反应温度的影响更为显著;DVB改性煤沥青的残炭率为53.4%~71.2%、软化点为89℃~151.0℃、密度为1.305g/cm~3~1.358g/cm~3,PMB改性煤沥青的残炭率为54.3%~67.6%、软化点为84.6℃~131.0℃、密度为1.306g/cm~3~1.342g/cm~3;改性煤沥青的甲苯不溶吡啶可溶物(TI-PS)的含量一般保持在16.0%~19.0%;改性煤沥青的甲苯可溶物(TS)、吡啶不溶物(PI)组份分别与残炭率、软化点、密度之间存在较好的线性关系。采用TG/DTG和Kissinger法对改性煤沥青的热解行为进行研究。结果表明,DVB改性煤沥青的热解过程是一步完成的,其热解活化能E_a=218.31kJ/mol、指前因子lnA=37.68S~(-1)、反应级数n=1.04;PMB改性煤沥青的热解过程是较复杂的,其热解活化能E_a=180.91KJ/mol、指前因子lnA=31.75s~(-1)、反应级数n=1.11。采用流变分析法对改性煤沥青的流变行为进行研究。结果表明,改性煤沥青摘 要表现出非牛顿流体行为。随温度的升高或剪切速率的增加,改性媒沥青的粘度降低:随TS含量增加,改性煤沥青的流动活化能厂变小、指前因子A变大;煤沥青在改性过程中可通过工艺的调整来控制煤沥青的粘度,以满足不同的使用要求。通过对改性煤沥青焦化产物光学结构的研究发现,随着热解温度的升高,改性煤沥青的甲基和亚甲基的仁H伸缩振动峰及弯曲振动峰的吸收强度逐渐减弱:随热解温度的升高,改性煤沥青的C/H原子比增加、芳香度提高;改性煤沥青焦化产物的偏光显微结构显著改善。随改性工艺和热聚合条件(温度、时间)的不同,改性煤沥青焦化产物的光学结构由超镶嵌uM)组织向广域m)组织转变。……   
[关键词]:炭材料;基体前驱体;煤沥青;改性;性能;热解;流变;光学结构
[文献类型]:博士论文
[文献出处]:西北工业大学2002年