手机知网 App
24小时专家级知识服务
打 开
手机知网|搜索

基于谱分析与统计机器学习的DDoS攻击检测技术研究

陈世文

  结合国家863项目“高可信网络业务管控系统”和“面向三网融合的统一安全管控网络”的研究需求,按照“分布式检测、层级化拦阻和集中态势感知”的总体思路,本文对DDoS攻击检测技术展开专门研究,从宏观攻击流感知与微观检测方法两个角度,提出了基于IP流序列谱分析的泛洪攻击与低速率拒绝服务(Low-rate Denial of Service, LDoS)攻击感知方法,在感知到攻击的基础上,将DDoS攻击检测转化为机器学习的二分类问题,利用隐马尔科夫模型、孪生支持向量机和条件随机场三种机器学习模型,实现概率点检测、分类超平面检测以及融合多特征处理优势的条件随机场检测方法。 针对宏观感知问题,提出了基于快速分数阶Fourier变换估计Hurst旨数的泛洪DDoS攻击感知方法,利用DDoS攻击对网络流量自相似性的影响,通过监测Hurst指数变化阈值判断是否存在DDoS攻击,相比于小波分析等方法,该方法计算复杂度低,Hurst旨数估计精度高;对于隐蔽性较强的低速率拒绝服务LDoS攻击,提出了基于巴特利特功率谱估计的感知方法,相比于矩形窗和三角窗方法,巴特利特功率谱估计一致性好,对低速率拒绝服务LDoS攻击检测率高。 针对微观的具体攻击特征检测问题,提出了基于隐马尔科夫模型、基于孪生支持向量机和基于条件随机场等三种统计机器学习方法的攻击检测策略。 首先,从概率点判别角度,提出了一种基于多特征并行隐马尔科夫模型(Multi-Feature Parallel Hidden Markov Model, MFP-HMM)的DDoS攻击检测方法。该方法利用HMM隐状态序列与特征观测序列的对应关系,将攻击引起的多维特征异常变化转化为离散型随机变量,通过概率计算来刻画当前滑动窗口序列与正常行为轮廓的偏离程度。MFP-HMM模型架构采用多维特征并行处理模式,有利于扩展新的特征模块。特征序列通过滑动窗口后形成观测序列送入HMM,可通过硬件实现多级流水加速,为可重构设计与分布式部署提供条件。实验结果表明,基于MFP-HMM的方法优于标准HMM等机器学习方法,检测准确率高,虚警率低。 其次,从分类超平面判别角度,提出了基于最小二乘孪生支持向量机(Least Square Twin Support Vector Machine, LSTSVM)的DDoS攻击分类超平面检测方法,该方法借助最优化方法来解决机器学习问题,利用支持向量机模型较好的非线性处理能力与泛化能力,采用IP包五元组熵、IP标识、TCP头标志和包速率等作为LSTSVM模型的多维检测特征向量,以体现DDoS攻击存在的流分布特性。基于DARPA2000数据集和TFN2K攻击采集数据集下的实验表明,该方法优于标准支持向量机(Support Vector Machine, SVM)等机器学习方法,对于正常突发流量与DDoS攻击流量检测准确率较高、虚警率较低。 最后,提出了一种融合多种判别规则的条件随机场DDoS攻击检测方法。该方法不要求各个特征量必须满足独立同分布的假设条件,在充分利用条件随机场综合处理多特征优势的基础上,将基于特征匹配与异常检测的方法有效地统一起来,实现高检测率与低误报率。DARPA2000数据集实验表明,基于条件随机场的方法优于传统SVM等方法,准确率高于99.5%,虚警率FPR低于0.6%,并且抗背景噪声能力强,鲁棒性好。……   
[关键词]:DDoS攻击;自相似性;分数阶傅氏变换;Bartlett谱估计;隐马尔科夫模型;孪生支持向量机;条件随机场
[文献类型]:博士论文
[文献出处]:解放军信息工程大学2013年